
Package: creditr (via r-universe)
December 27, 2024

Version 0.6.2

Date 2024-12-15

Title Credit Default Swaps

Depends R (>= 3.1.0)

Imports utils, quantmod, devtools, methods, Rcpp (>= 0.10.6), RCurl,
XML, zoo, xts

LinkingTo Rcpp

Suggests testthat

License file LICENSE

URL https://github.com/yanrong-stacy-song/creditr

Description Price credit default swaps using 'C' code from the
International Swaps and Derivatives Association CDS Standard
Model. See
<https://www.cdsmodel.com/cdsmodel/documentation.html> for more
information about the model and
<https://www.cdsmodel.com/cdsmodel/cds-disclaimer.html> for
license details for the 'C' code.

LazyData true

RoxygenNote 7.3.2

Encoding UTF-8

Config/pak/sysreqs libfontconfig1-dev libfreetype6-dev libfribidi-dev
git make libharfbuzz-dev libgit2-dev libicu-dev libjpeg-dev
libpng-dev libtiff-dev libxml2-dev libssl-dev libx11-dev
zlib1g-dev

Repository https://yanrong-stacy-song.r-universe.dev

RemoteUrl https://github.com/yanrong-stacy-song/creditr

RemoteRef HEAD

RemoteSha a7ef33fd325638bd5cfce203e4160f7cb0f0342b

1

https://github.com/yanrong-stacy-song/creditr
https://www.cdsmodel.com/cdsmodel/documentation.html
https://www.cdsmodel.com/cdsmodel/cds-disclaimer.html

2 add_conventions

Contents
add_conventions . 2
add_dates . 3
adj_next_bus_day . 4
build_rates . 5
call_ISDA . 6
CDS . 6
CDS, CDS-class . 8
check_inputs . 9
creditr . 10
CS10 . 11
download_FRED . 12
download_markit . 13
get_rates . 14
get_raw_markit . 14
implied_RR . 15
IR_DV01 . 16
pd_to_spread . 17
PV01 . 18
rates . 18
rec_risk_01 . 20
separate_YMD . 21
show . 22
spread_DV01 . 22
spread_to_pd . 23
spread_to_upfront . 24
summary . 25
upfront_to_spread . 26

Index 28

add_conventions Return accounting conventions

Description

add_conventions takes a data frame with a currency.var column and returns the same data frame
with eight other columns of accounting conventions added to it.

Usage

add_conventions(x, currency.var = "currency")

Arguments

x a data frame containing all necessary information

currency.var a character indicating the name of currency column

add_dates 3

Value

a data frame with eight more columns of accounting conventions: badDayConvention (a character
indicating how non-business days are converted), mmDCC (the day count convention of the instru-
ments), mmCalendars (any calendar adjustment for the CDS), fixedDCC (the day count convention
of the fixed leg), floatDCC (the day count convention of the floating leg), fixedFreq (the frequency
of the fixed rate of swap being paid), floatFreq (the frequency of the floating rate of swap being
paid) and swapCalendars (any calendar adjustment for swap rate)

References

https://www.cdsmodel.com/cdsmodel/assets/cds-model/docs/c-code%20Key%20Functions-v1.
pdf

Examples

x <- data.frame(date = c(as.Date("2014-05-06"), as.Date("2014-05-07")),
currency = c("USD", "JPY"))

add_conventions(x)

add_dates Return CDS dates.

Description

add_dates takes a data frame which contains dates, tenor (or maturity) and currency and returns
appropriate dates for pricing a CDS contract.

Usage

add_dates(
x,
date.var = "date",
maturity.var = "maturity",
tenor.var = "tenor",
currency.var = "currency"

)

Arguments

x a data frame, containing all necessary information

date.var character, column name of date variable

maturity.var character, column name of maturity variable

tenor.var character, column name of tenor variable

currency.var character, column name of currency variable

https://www.cdsmodel.com/cdsmodel/assets/cds-model/docs/c-code%20Key%20Functions-v1.pdf
https://www.cdsmodel.com/cdsmodel/assets/cds-model/docs/c-code%20Key%20Functions-v1.pdf

4 adj_next_bus_day

Value

a date frame containing all the input columns, as well as eight more columns: stepinDate (T+1),
valueDate (T+3 business days), startDate (accrual begin date), endDate (maturity), backstopDate
(T-60 day look back from which ’protection’ is effective), firstcouponDate (the date on which the
first coupon is paid), pencouponDate (second to last coupon date), and baseDate (the starting date
for the IR curve)

References

https://www.cdsmodel.com/cdsmodel/assets/cds-model/docs/c-code%20Key%20Functions-v1.
pdf https://www.cdsmodel.com/assets/cds-model/docs/Standard%20CDS%20Examples.pdf

Examples

x <- data.frame(date = c(as.Date("2014-05-06"), as.Date("2014-05-07")),
tenor = rep(5, 2), currency = c("JPY", "USD"))

add_dates(x)

adj_next_bus_day Adjust to next business day.

Description

adj_next_bus_day gets the next business day following 5D bus day convention.

Usage

adj_next_bus_day(date)

Arguments

date a Date type.

Value

Date adjusted to the following business day

https://www.cdsmodel.com/cdsmodel/assets/cds-model/docs/c-code%20Key%20Functions-v1.pdf
https://www.cdsmodel.com/cdsmodel/assets/cds-model/docs/c-code%20Key%20Functions-v1.pdf
https://www.cdsmodel.com/assets/cds-model/docs/Standard%20CDS%20Examples.pdf

build_rates 5

build_rates Build a data frame containing interest rates for CDS pricing

Description

build_rates can create a data frame of interest rates from a start date to an end date, which
are specified by the user. The interest rates will be later used in CDS pricing. build_rates
also builds the rates.RData in the package. build_rates mainly consists download_markit and
download_FRED. The two sources are Markit website and FRED website.

Usage

build_rates(start.date, end.date)

Arguments

start.date is the start date of the data frame; it is the earliest CDS pricing date that the user
concerns.

end.date is the end date of the data frame; it is the lastest CDS pricing date that the user
concerns.

Details

since Markit wesite has the interest rates back to th 1990s, download_markit is responsible for
building up all the USD interest rate data frame; for EUR and JPY, markit can only get from 2005-
01-05 to now. But the biggest advantage of using download_markit is that, since Markit website
only lists the rate expiries that are actually used for CDS pricing, download_markit can get the exact
type of expiries of rates needed to price CDS. Also, it has expiry over 1Y to 30Y. In contrast, FRED
is only complementary to markit data. Since download_markit can get any rates for USD, we don’t
use FRED for USD. Then we want to get data for EUR and JPY before 2005-01-04 (the limit of
markit). FRED has almost all data for any date, which is its biggest advantage. But its biggest
disadvantage is that it doesn’t know which expiry type is suitable for which time, since FRED
website has expiry of all types below a year; also it doesn’t have expiry over 1Y.So we hardcoded
the dates below, to combine markit and FRED in the most suitable way.

Another note is that, the rates on both Markit website and FRED website have not been adjusted to
the previous business day. In other words, the rates from both website is the exact rate on that day,
rather than on the previous business day. But download_markit and download_FRED have adjusted
the days already for the convenience of CDS pricing, so we don’t have to worry here.

Value

a data frame that contains the CDS pricing date, the currency, the interest rate expiry and the interest
rate.

References

https://www.spglobal.com/en https://fred.stlouisfed.org/docs/api/fred/

https://www.spglobal.com/en
https://fred.stlouisfed.org/docs/api/fred/

6 CDS

See Also

download_markit download_FRED rates

Examples

Not run:
Running this example will take more than two hours.

build_rates(start.date = as.Date("2004-01-01"),
end.date = as.Date("2014-08-23"))

End(Not run)

call_ISDA call ISDA c function

Description

call_ISDA call ISDA function

Usage

call_ISDA(x, name, rates.info)

Arguments

x dataframe which contains relevant dates and convention info

name character function name within which call_ISDA is called

rates.info dataframe which contains relevant rates data

Value

a numeric value which is the difference between the new upfront and the old one

CDS Build a CDS class object given the input about a CDS contract.

Description

Build a CDS class object given the input about a CDS contract.

CDS 7

Usage

CDS(
name = NULL,
contract = "SNAC",
RED = NULL,
date = Sys.Date(),
spread = NULL,
maturity = NULL,
tenor = NULL,
coupon = 100,
recovery = 0.4,
currency = "USD",
notional = 1e+07

)

Arguments

name is the name of the reference entity. Optional.

contract is the contract type, default SNAC

RED alphanumeric code assigned to the reference entity. Optional.

date is when the trade is executed, denoted as T. Default is Sys.Date. The date
format should be in "YYYY-MM-DD".

spread CDS par spread in bps.

maturity date of the CDS contract.

tenor of contract. By default is set as 5

coupon quoted in bps. It specifies the payment amount from the protection buyer to the
seller on a regular basis. The default is 100 bps.

recovery in decimal. Default is 0.4.

currency in which CDS is denominated.

notional is the amount of the underlying asset on which the payments are based. Default
is 10000000, i.e. 10MM.

Value

a CDS class object including the input informtion on the contract as well as the valuation results of
the contract.

Examples

x <- CDS(date = as.Date("2014-05-07"), tenor = 5, spread = 50, coupon = 100)

8 CDS, CDS-class

CDS, CDS-class CDS Class

Description

Class definition for the CDS-Class

Slots

name is the name of the reference entity. Optional.

contract is the contract type, default SNAC

RED alphanumeric code assigned to the reference entity. Optional.

date is when the trade is executed, denoted as T. Default is Sys.Date.

spread CDS par spread in bps.

maturity date of the CDS contract.

tenor of contract in number of years - 5, 3

coupon quoted in bps. It specifies the payment amount from

recovery in decimal. Default is 0.4.

currency in which CDS is denominated.

principal is the dirty upfront less the accrual.

accrual is the accrued interest payment.

pd is the approximate the default probability at time t given the spread.

price is the price

upfront is quoted in the currency amount. Since a standard contract is traded with fixed coupons,
upfront payment is introduced to reconcile the difference in contract value due to the difference
between the fixed coupon and the conventional par spread. There are two types of upfront,
dirty and clean. Dirty upfront, a.k.a. Cash Settlement Amount, refers to the market value of
a CDS contract. Clean upfront is dirty upfront less any accrued interest payment, and is also
called the Principal.

spread.DV01 measures the sensitivity of a CDS contract mark-to-market to a parallel shift in the
term structure of the par spread.

IR.DV01 is the change in value of a CDS contract for a 1 bp parallel increase in the interest rate
curve. IRDV01 is, typically, a much smaller dollar value than spreadDV01 because moves in
overall interest rates have a much smaller effect on the value of a CDS contract than does a
move in the CDS spread itself.

rec.risk.01 is the dollar value change in market value if the recovery rate used in the CDS valu-
ation were increased by 1%.

check_inputs 9

check_inputs Check whether inputs from the data frame are valid.

Description

check_inputs checks whether a data frame’s inputs are valid. It is a minimum set of checks.
Things such as recovery var are not checked, because some functions don’t need them as input.

Usage

check_inputs(
x,
date.var = "date",
currency.var = "currency",
maturity.var = "maturity",
tenor.var = "tenor",
spread.var = "spread",
coupon.var = "coupon",
notional.var = "notional",
notional = 1e+06,
recovery.var = "recovery",
recovery = 0.4

)

Arguments

x data frame, contains all the relevant columns.

date.var character, column in x containing date variable.

currency.var character, column in x containing currency.

maturity.var character, column in x containing maturity date.

tenor.var character, column in x containing tenors.

spread.var character, column in x containing spread in basis points.

coupon.var character, column in x containing coupon rates in basis points. It specifies the
payment amount from the protection buyer to the seller on an annual basis.

notional.var character, column in x containing the amount of the underlying asset on which
the payments are based.

notional numeric, the notional amount for all pricing if there isn’t a notional.var

recovery.var character, column in x containing recovery rates. ISDA model standard recovery
rate asscumption is 0.4.

recovery numeric, the recovery rate for all pricing if there isn’t a recovery.var

Value

a data frame if not stopped by errors.

10 creditr

Examples

x <- data.frame(date = as.Date(c("2014-04-22", "2014-04-22")),
currency = c("USD", "EUR"),
tenor = c(5, 5),
spread = c(120, 110),
coupon = c(100, 100),
recovery = c(0.4, 0.4),
notional = c(1000000, 1000000))

x <- check_inputs(x)

creditr The creditr package.

Description

creditr package prices credit default swaps (CDS). It enables CDS class object which has slots as
name, contract, RED, date, spread, maturity, teno, coupon, recovery, currency, notional, principal,
accrual, pd, price, upfront, spread.DV01, IR.DV01 and rec.risk.01, with S4 methods like update,
show and summary. It also supports data frame input and is able to provide convenient calculation of
key CDS statistics through functions like CS10, IR.DV01, rec_risk_01 and spread_DV01. Of other
major functions, spread_to_upfront and upfront_to_spread are designed to compute one of
spread and upfront given the other; spread_to_pd and pd_to_spread, similarly, can calculate one
of spread and probability of default given the other; add_dates and add_conventions compute a
series of dates information and accounting conventions related to CDS pricing. Finally, get_rates
and build_rates facilitates direct fetching of relevant interest rates from online sources. Thanks to
ISDA Standard Model’s Open Source license, we are able to create this package for R users. You can
find the Open Source licence of ISDA Standard Model at "https://www.cdsmodel.com/cdsmodel/cds-
disclaimer.html"

Author(s)

Maintainer: Yanrong Song <yrsong129@gmail.com>

Authors:

• Zijie Zhu <zijie.miller.zhu@gmail.com>

• David Kane <dave.kane@gmail.com>

• Heidi Chen <s.heidi.chen@gmail.com>

• Yuanchu Dang <yuanchu.dang@gmail.com>

• Yang Lu <yang.lu2014@gmail.com>

• Kanishka Malik <kanishkamalik@gmail.com>

• Skylar Smith <sws2@williams.edu>

Other contributors:

• International Swaps and Derivatives Association (Copyright holder of the free CDS standard
model code used in this package) [copyright holder]

CS10 11

See Also

Useful links:

• https://github.com/yanrong-stacy-song/creditr

CS10 Calculate CS10

Description

CS10 calculates the change in upfront value when the spread rises by 10

Usage

CS10(
x,
date.var = "date",
currency.var = "currency",
maturity.var = "maturity",
tenor.var = "tenor",
spread.var = "spread",
coupon.var = "coupon",
recovery.var = "recovery",
notional.var = "notional",
notional = 1e+07,
recovery = 0.4

)

Arguments

x data frame, contains all the relevant columns.

date.var character, column in x containing date variable.

currency.var character, column in x containing currency.

maturity.var character, column in x containing maturity date.

tenor.var character, column in x containing tenors.

spread.var character, column in x containing spread in basis points.

coupon.var character, column in x containing coupon rates in basis points. It specifies the
payment amount from the protection buyer to the seller on an annual basis.

recovery.var character, column in x containing recovery rates. ISDA model standard recovery
rate asscumption is 0.4.

notional.var character, column in x containing the amount of the underlying asset on which
the payments are based.

notional numeric, the notional amount for all pricing if there isn’t a notional.var

recovery numeric, the recovery rate for all pricing if there isn’t a recovery.var

https://github.com/yanrong-stacy-song/creditr

12 download_FRED

Value

a vector containing the change in upfront in units of currency.var when spread increase by 10

Examples

x <- data.frame(date = as.Date(c("2014-04-22", "2014-04-22")),
currency = c("USD", "EUR"),
tenor = c(5, 5),
spread = c(120, 110),
coupon = c(100, 100),
recovery = c(0.4, 0.4),
notional = c(10000000, 10000000),
stringsAsFactors = FALSE)

CS10(x)

download_FRED Get Rates from FRED

Description

download_FRED returns the deposits and swap rates for the day input, along with the date conven-
tions for that specific currency. The source is FRED.

Usage

download_FRED(
start = as.Date("2004-01-01"),
end = as.Date("2005-01-04"),
currency = "JPY"

)

Arguments

start is the start date of the data frame we want

end is the end date of the data frame we want

currency is the three-letter currency code. As of now, it works for USD, EUR, and JPY.
The default is JPY.

Value

a data frame that contains the rates based on the ISDA pecifications

See Also

download_markit build_rates

download_markit 13

Examples

Not run:
download_FRED(start = as.Date("2003-12-31"), end = as.Date("2005-01-04"),

currency = "JPY")

End(Not run)

download_markit Get rates from Markit

Description

download_markit takes a data frame of dates and returns a data frame with the yields for different
maturities.

Usage

download_markit(start, end, currency = "USD")

Arguments

start date for gathering interest rates. Must be a Date type

end date for gathering interest rates. Must be a Date type

currency for which rates are being retrieved

Value

data frame containing the rates from every day from start to end dates. Note: the date in the output
data frame does not refer to the rates of that day but to the date on which the CDS is being priced.
So the corresponding rate is actually the rate of the previous day. Example: if the column reads
2014-04-22, the corresponding rates are actually for 2014-04-21.

See Also

download_FRED build_rates

Examples

Not run:
download_markit(start = as.Date("2005-12-31"), end = as.Date("2006-01-04"),

currency = "JPY")

End(Not run)

14 get_raw_markit

get_rates Get interest rates from rates.RData or the Markit website

Description

get_rates returns the deposits and swap rates for the day input, along with the date conventions
for that specific currency. The day input should be a weekday. If not, go to the most recent previous
weekday.

Usage

get_rates(date, currency)

Arguments

date Trade date. The rates for a trade date T are published on T-1 weekday. This date
refers to the day on which we want the CDS to be priced, not the date for the
interest rates as the interest rates will be used is the day before the trade date.
Eg. If we are trying to find the rates used to price a CDS on 2014-04-22, it will
return the rates of 2014-04-21

currency the three-letter currency code. As of now, it works for USD, EUR, and JPY. The
default is USD.

Value

a data frame that contains date (the CDS pricing date),

Examples

get_rates(as.Date("2014-05-07"), currency = "USD")

get_raw_markit Get raw data from Markit website.

Description

get_raw_markit downloads the rates zip file from Markit website, unzips and parses the XML

Usage

get_raw_markit(date, currency)

Arguments

date Date type, is the CDS pricing date.

currency numeric, is the currency that the CDS is traded in.

implied_RR 15

Value

a data frame that contains CDS pricing date, currency, interest rate expiry and interest rate. The
data frame is created with data from Markit website

implied_RR Calculates Implied Recovery Rate

Description

implied_RR that calculates the recovery rate implied by the CDS spread and probability of default
(pd) by using the ISDA model. This takes a data frame of inputs and returns a vector of the same
length.

Usage

implied_RR(
x,
date.var = "date",
tenor.var = "tenor",
maturity.var = "maturity",
spread.var = "spread",
pd.var = "pd"

)

Arguments

x data frame, contains all the relevant columns.

date.var character, column in x containing date variable.

tenor.var character, column in x containing tenors.

maturity.var character, column in x containing maturity date.

spread.var character, column in x containing spread in basis points.

pd.var name of the column containing the probability of default rates.

Value

implied recovery rate in percentage based on the general approximation for a probability of default
in the Bloomberg manual. The actual calculation uses a complicated bootstrapping process, so the
results may be marginally different.

16 IR_DV01

IR_DV01 Calculate IR.DV01

Description

IR_DV01 calculate the amount of change in upfront when there is a 1/1e4 increase in interest rate
for a data frame of CDS contracts.

Usage

IR_DV01(
x,
date.var = "date",
currency.var = "currency",
maturity.var = "maturity",
tenor.var = "tenor",
spread.var = "spread",
coupon.var = "coupon",
recovery.var = "recovery",
notional.var = "notional",
notional = 1e+07,
recovery = 0.4

)

Arguments

x data frame, contains all the relevant columns.

date.var character, column in x containing date variable.

currency.var character, column in x containing currency.

maturity.var character, column in x containing maturity date.

tenor.var character, column in x containing tenors.

spread.var character, column in x containing spread in basis points.

coupon.var character, column in x containing coupon rates in basis points. It specifies the
payment amount from the protection buyer to the seller on an annual basis.

recovery.var character, column in x containing recovery rates. ISDA model standard recovery
rate asscumption is 0.4.

notional.var character, column in x containing the amount of the underlying asset on which
the payments are based.

notional numeric, the notional amount for all pricing if there isn’t a notional.var

recovery numeric, the recovery rate for all pricing if there isn’t a recovery.var

Value

a vector containing the change in upfront when there is a 1/1e4 increase in interest rate, for each
corresponding CDS contract.

pd_to_spread 17

Examples

x <- data.frame(date = c(as.Date("2014-04-22"), as.Date("2014-04-22")),
currency = c("USD", "EUR"),
tenor = c(5, 5),
spread = c(120, 110),
coupon = c(100, 100),
recovery = c(0.4, 0.4),
notional = c(10000000, 10000000),
stringsAsFactors = FALSE)

IR_DV01(x)

pd_to_spread Calculate spread with Default Probability

Description

pd_to_spread to calculate spread using the probability of default, tenor and recovery rate.

Usage

pd_to_spread(
x,
recovery.var = "recovery",
currency.var = "currency",
tenor.var = "tenor",
date.var = "date",
pd.var = "pd"

)

Arguments

x data frame, contains all the relevant columns.
recovery.var character, column in x containing recovery rates. ISDA model standard recovery

rate asscumption is 0.4.
currency.var character, column in x containing currency.
tenor.var character, column in x containing tenors.
date.var character, column in x containing date variable.
pd.var name of the column containing the probability of default in decimals.

Value

vector containing the spread values in basis points, calculated by inverting the formula for proba-
bility of default given in the Bloomberg Manual

See Also

spread_to_pd

18 rates

PV01 Calculate PV01

Description

PV01 to calculate present value 01 or present value of a stream of 1bp payments

Usage

PV01(
x,
principal.var = "principal",
spread.var = "spread",
coupon.var = "coupon",
notional.var = "notional"

)

Arguments

x data frame, contains all the relevant columns.

principal.var name of the column containing the principal or clean upfront values of the CDS

spread.var character, column in x containing spread in basis points.

coupon.var character, column in x containing coupon rates in basis points. It specifies the
payment amount from the protection buyer to the seller on an annual basis.

notional.var character, column in x containing the amount of the underlying asset on which
the payments are based.

Value

Vector containing the PV01 values

rates LIBOR rates from 2004-01-01 to 2015-08-03

Description

This data frame is created by build_rates in creditr package to calculate the CDS pricing. It
covers three currencies: USD, EUR, and JPY. The interest rates date from 2004-01-01 to 2014-08-
23. Rates on holidays and weekends are available as well as business days.

rates 19

Format

A data frame with 194378 observations on the following 4 variables.

• date = a date (Date object)

• currency = a character containing USD EUR JPY

• expiry = a character containing 1M 2M 3M 6M 9M 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 12Y 15Y 20Y
30Y

• rate = a numeric vector. The LIBOR rate.

Details

The source of the interest rates in rates.RData is from https://www.spglobal.com/en and
https://fred.stlouisfed.org/. When a user is calculating CDS using the CDS package, the
package calls get_rates to get the needed interest rates; get_rates then calls the rates.RData
for these interest rates. If a date is unavailable in rates.RData, then the package calls other func-
tions to get the needed interest rates from the internet. The rates.RData is created and stored in
the package for the users’ convenience: getting interest rates from the Internet may fail due to the
internet connection problem and may be very slow. Also, the user can build its own updated local
rates.RData by using build_rates. For more explanation on the usage of build_rates, please
see See Also.

Also, please notice that in the rates.RData, the rate is not the interest rate on the date listed in
the same row as the rate. For example, in the first row, the rate is 0.001550; the date in that row
is 2014-08-21. But this does not mean that on 2014-08-21, the interest rate is 0.001550; instead,
0.001550 is the interest rate on 2014-08-20. This regulation of using the interest rate on the previous
business day of CDS trading date is set by ISDA Standard Model. The Model says that, if a trader
buy a CDS on 2014-08-21, then when calculating the pricing of the CDS, she should use the interest
rate of 2014-08-20, which is 0.001550. This may be confusing for people who are yet unfamiliar
with CDS. We design rates.RData in this way because it is easier for other functions in the CDS
package to use this data frame for calculation.

rates.RData covers holidays, weekend and business days. As is set by ISDA Standard Model
and introduced above, we use the previous business day’s interest rate for CDS pricing on a certain
trading date. Therefore, if the user is buying a CDS on Saturday, she should use the interest rate
of last Friday; if she is buying a CDS on Sunday or Monday, she should still use the interest rate
of last Friday, because last Friday is the previous business day of the CDS trading date. When it
comes to holidays, we still choose the previous business day for interest rate. For example, if a
trader is buying a CDS on 2014-07-05, then she should use the interest rate of 2014-07-03, because
2014-07-04 is a national holiday and 2014-07-03 is the previous business day of trading date.

Also, please notice that in rates.RData, a currency’s type of expiries generally stays the same
along the time, but not always. For example, we check the expiry type of USD in rates.RData: for
2004-01-01, there are two types of expirty: 1M, 3Y; for 2006-01-01, there are five types of expiry:
1M, 2M, 3M, 6M, 1Y; for 2007-01-01, there are 18 types of expiry; for 2014-01-01, there are 19
types of expiry. Therefore, for a trader, she should always keep in mind to update her knowledge
of the expiry types of her trading currency. For different currencies, the types of expiries are often
different.

Finally, please notice that some of the data are missing for a certain expiry of a currency in a short
time. For example, some dates in rates.RData do not have a expiry of 3Y for USD. This is not

https://www.spglobal.com/en
https://fred.stlouisfed.org/

20 rec_risk_01

likely to be caused by data error, since all these data are got from Markit and FRED. Users, however,
should be aware of that some data seem "missing".

Source

https://www.spglobal.com/en https://fred.stlouisfed.org/

See Also

download_FRED download_markit build_rates

Examples

data(rates)

for JPY rates:
rates[rates$currency == "JPY",]

for rates on a specific date, of a specific currency:
rates[rates$currency == "USD" & rates$date == "2005-10-01",]

rec_risk_01 Calculate Recovery Rate Changes

Description

rec_risk_01 calculates the amount of change in upfront when there is a 1

Usage

rec_risk_01(
x,
date.var = "date",
currency.var = "currency",
maturity.var = "maturity",
tenor.var = "tenor",
spread.var = "spread",
coupon.var = "coupon",
recovery.var = "recovery",
notional.var = "notional",
recovery = 0.4,
notional = 1e+07

)

https://www.spglobal.com/en
https://fred.stlouisfed.org/

separate_YMD 21

Arguments

x data frame, contains all the relevant columns.

date.var character, column in x containing date variable.

currency.var character, column in x containing currency.

maturity.var character, column in x containing maturity date.

tenor.var character, column in x containing tenors.

spread.var character, column in x containing spread in basis points.

coupon.var character, column in x containing coupon rates in basis points. It specifies the
payment amount from the protection buyer to the seller on an annual basis.

recovery.var character, column in x containing recovery rates. ISDA model standard recovery
rate asscumption is 0.4.

notional.var character, column in x containing the amount of the underlying asset on which
the payments are based.

recovery numeric, the recovery rate for all pricing if there isn’t a recovery.var

notional numeric, the notional amount for all pricing if there isn’t a notional.var

Value

a vector containing the change in upfront when there is a 1 percent increase in recovery rate, for
each corresponding CDS contract.

Examples

x <- data.frame(date = c(as.Date("2014-04-22"), as.Date("2014-04-22")),
currency = c("USD", "EUR"),
tenor = c(5, 5),
spread = c(120, 110),
coupon = c(100, 100),
recovery = c(0.4, 0.4),
notional = c(10000000, 10000000),
stringsAsFactors = FALSE)

rec_risk_01(x)

separate_YMD Separate Year/Month/Day

Description

separate_YMD contains helper functions to separate an input date into year, month, and day.

Usage

separate_YMD(d)

22 spread_DV01

Arguments

d is an input date.

Value

an array contains year, month, date of the input date d.

show Show Method

Description

show shows a CDS class object.

Usage

S4 method for signature 'CDS'
show(object)

Arguments

object the input CDS object

spread_DV01 Calculate Spread Change

Description

spread_DV01 calculates the spread DV01 or change in upfront value when the spread rises by 1
basis point

Usage

spread_DV01(
x,
date.var = "date",
currency.var = "currency",
maturity.var = "maturity",
tenor.var = "tenor",
spread.var = "spread",
coupon.var = "coupon",
recovery.var = "recovery",
notional.var = "notional",
notional = 1e+07,
recovery = 0.4

)

spread_to_pd 23

Arguments

x data frame, contains all the relevant columns.

date.var character, column in x containing date variable.

currency.var character, column in x containing currency.

maturity.var character, column in x containing maturity date.

tenor.var character, column in x containing tenors.

spread.var character, column in x containing spread in basis points.

coupon.var character, column in x containing coupon rates in basis points. It specifies the
payment amount from the protection buyer to the seller on an annual basis.

recovery.var character, column in x containing recovery rates. ISDA model standard recovery
rate asscumption is 0.4.

notional.var character, column in x containing the amount of the underlying asset on which
the payments are based.

notional numeric, the notional amount for all pricing if there isn’t a notional.var

recovery numeric, the recovery rate for all pricing if there isn’t a recovery.var

Value

a vector containing the change in upfront when there is a 1 basis point increase in spread, for each
corresponding CDS contract.

Examples

x <- data.frame(date = c(as.Date("2014-04-22"), as.Date("2014-04-22")),
currency = c("USD", "EUR"),
tenor = c(5, 5),
spread = c(120, 110),
coupon = c(100, 100),
recovery = c(0.4, 0.4),
notional = c(10000000, 10000000),
stringsAsFactors = FALSE)

spread_DV01(x)

spread_to_pd Calcualte Default Probability with Spread

Description

spread_to_pd approximates the default probability at time given the spread

24 spread_to_upfront

Usage

spread_to_pd(
x,
recovery.var = "recovery",
currency.var = "currency",
tenor.var = "tenor",
maturity.var = "maturity",
date.var = "date",
spread.var = "spread"

)

Arguments

x data frame, contains all the relevant columns.

recovery.var character, column in x containing recovery rates. ISDA model standard recovery
rate asscumption is 0.4.

currency.var character, column in x containing currency.

tenor.var character, column in x containing tenors.

maturity.var character, column in x containing maturity date.

date.var character, column in x containing date variable.

spread.var character, column in x containing spread in basis points.

Value

vector containing the probability of default, calculated by using the formula for probability of de-
fault given in the Bloomberg Manual

See Also

pd_to_spread

spread_to_upfront Calculate Upfront Payments

Description

spread_to_upfront takes a dataframe of variables on CDSs to return a vector of upfront values.
Note that all CDS in the data frame must be denominated in the same currency.

summary 25

Usage

spread_to_upfront(
x,
currency.var = "currency",
notional = 1e+07,
date.var = "date",
spread.var = "spread",
coupon.var = "coupon",
tenor.var = "tenor",
maturity.var = "maturity",
recovery.var = "recovery",
isPriceClean = FALSE

)

Arguments

x data frame, contains all the relevant columns.

currency.var character, column in x containing currency.

notional is the amount of the underlying asset on which the payments are based. Default
is 10000000, i.e. 10MM.

date.var character, column in x containing date variable.

spread.var character, column in x containing spread in basis points.

coupon.var character, column in x containing coupon rates in basis points. It specifies the
payment amount from the protection buyer to the seller on an annual basis.

tenor.var character, column in x containing tenors.

maturity.var character, column in x containing maturity date.

recovery.var character, column in x containing recovery rates. ISDA model standard recovery
rate asscumption is 0.4.

isPriceClean refers to the type of upfront calculated. It is boolean. When TRUE, calculate
principal only. When FALSE, calculate principal + accrual.

Value

vector of upfront values (with accrual) in the same order

summary Summary Method

Description

summary method displays only the essential info about the CDS class object.

26 upfront_to_spread

Usage

S4 method for signature 'CDS'
summary(object, ...)

Arguments

object the input CDS object

... additional arguments to pass in

upfront_to_spread Calculate Spread with a Given Upfront

Description

upfront_to_spread calculates conventional spread using the upfront or ptsUpfront values.

Usage

upfront_to_spread(
x,
currency.var = "currency",
date.var = "date",
coupon.var = "coupon",
tenor.var = "tenor",
maturity.var = "maturity",
recovery.var = "recovery",
upfront.var = "upfront",
points.var = "ptsUpfront",
isPriceClean = FALSE,
notional = 1e+07,
payAccruedAtStart = FALSE,
payAccruedOnDefault = TRUE

)

Arguments

x data frame, contains all the relevant columns.

currency.var character, column in x containing currency.

date.var character, column in x containing date variable.

coupon.var character, column in x containing coupon rates in basis points. It specifies the
payment amount from the protection buyer to the seller on an annual basis.

tenor.var character, column in x containing tenors.

maturity.var character, column in x containing maturity date.

recovery.var character, column in x containing recovery rates. ISDA model standard recovery
rate asscumption is 0.4.

upfront_to_spread 27

upfront.var is the character name of upfront column

points.var character name of points Upfront column

isPriceClean a boolean variable indicating whether the upfront is clean or dirty

notional numeric variable indicating the notional value of the CDS contract
payAccruedAtStart

whether pay at start date the accrual amount
payAccruedOnDefault

whether pay in default scenario the accrual amount

recovery numeric, the recovery rate for all pricing if there isn’t a recovery.var

Value

a numeric indicating the spread.

Index

∗ datasets
rates, 18

∗ interest
rates, 18

∗ rates
rates, 18

add_conventions, 2
add_dates, 3
adj_next_bus_day, 4

build_rates, 5, 12, 13, 20

call_ISDA, 6
CDS, 6
CDS, (CDS, CDS-class), 8
CDS, CDS-class, 8
CDS-class (CDS, CDS-class), 8
check_inputs, 9
creditr, 10
creditr-package (creditr), 10
CS10, 11

download_FRED, 6, 12, 13, 20
download_markit, 6, 12, 13, 20

get_rates, 14
get_raw_markit, 14

implied_RR, 15
IR_DV01, 16

pd_to_spread, 17, 24
PV01, 18

rates, 6, 18
rec_risk_01, 20

separate_YMD, 21
show, 22
show,CDS-method (show), 22

spread_DV01, 22
spread_to_pd, 17, 23
spread_to_upfront, 24
summary, 25
summary,CDS-method (summary), 25

upfront_to_spread, 26

28

	add_conventions
	add_dates
	adj_next_bus_day
	build_rates
	call_ISDA
	CDS
	CDS, CDS-class
	check_inputs
	creditr
	CS10
	download_FRED
	download_markit
	get_rates
	get_raw_markit
	implied_RR
	IR_DV01
	pd_to_spread
	PV01
	rates
	rec_risk_01
	separate_YMD
	show
	spread_DV01
	spread_to_pd
	spread_to_upfront
	summary
	upfront_to_spread
	Index

